
A NEW METHOD FOR FPGA IMPLEMENTATION OF
ARTIFICIAL NEURAL NETWORK USED IN SMART DEVICES

Stefan Oniga
Lecturer Eng

Nprth University o/Baia Mare, Romania

Smart devices development with leaming capabilities and adaptive behavior is a
need of these days. The implementation of such devices is possible using artificial
neural networks (ANN). The present work shows a new, efficient and rapid method
to design, train and implement in FPGA neural networks. lSystem Generator tool for
Simulink is u~ed for ANN design using neural networks specific blocks, created by
author. The Matlab is used to perform the off-chip leaming task. System Generator
also allows the easy generation of hardware Description Language (HDL) code
from the system represented in Simulink. The VHDL design can then be
synthesized for implementation in the XiliIL'<. family ofFPGA devices.

Keywords: smart, neural network, adaptive, learning, FPGA, VHDL

INTRODUCTION

Nowadays the development of intelligent and more natural smart devices,
without need of knowledge for parameters setting activity, is attracting the interest
of many research groups worldwide. The need to have learning capacity and
adaptive behavior for such smart devices can be satisfied using neural networks and
FPGA implementation is an easy an attractive way for hardware implementation

Among possible applications are intelligent computer peripherals enabling
people with any kind of handicap to use computer and communicate, as any kind of
industrial or domestic device with leaming and adaptive capabilities.

The goal of this work was to develop hardware-software codesign platfol1n
enabling the fast development of smart interfaces using:

- Applieation specific sensors,
- hardware modules that ean be easily connectcd
- VHDL modules that can manage sensors,
- Artificial Neural Networks (ANN) used for example for featurcs

extraction, pattern recognition, etc.
Using this framework development of new smart devices needs only design anel

synthesis of new VHDL drivers for the new sensors and new application-specitic
ANNs.

THEMETHOD

The integrated hardware-software environment represents a new framework for
hardware implementation of the Artificial Neural Networks and could be used for
example for:

1. Development of ANN specific blocks in Simulink Xilinx blockset

31

Data (RAM)

r-o""'a7"ta-+lData

~W;::'.ig::;:ht:':"5-tIO>lWeights Outl CC)
Out

Activation function

i
Re.el ACC 'i-----------JI. Rc;.t Ace

Control logic

MAC

Fig. 2

dbl fptl---t---J>i

Data adr'&o I

WE

2. 	 Easy implementation in hardware of many types of ANNs
3. 	 Development of new smalt devices using Field Programmable Gate Arrays

NEURAL NETWORK DESIGN

Neural networks could be realized using the specific modules created by author
with blocks [rom Xilinx Blockset library ofthe System Generator tool for Simulink,
presented in Figure 1.

:3 j!j x.Iinx Biockset ,
, :;ttl eaSic Element5 i» 	 .'

'.~~, ele: ~ Comm<Jfllcot,on

i ~ Control logic

! ;ttl Dota Type.
 ; G
~

CIe", aUd""'''''''', Ello,
!' ~ DSP

! ;a.Jlnde"

! ;ttl Math

i ;ttl Memory
 e eiaekProbei ;ţtJ TooI>

El il: Xili",x Ref",."". B1cckset
, ! ~ Commurucotion t> CMuII

1· ;ttl ControllOQIC

i hl DSP
 nu.. _ ConCâl

l ~ Im3Qrn~

" ~M.th
 I 	 J Conf~Ulob!e Sub,y,lem MIlfl3g",

ctJ !il Xiiinx XtremeD5P Klt

Fig. 1

Xilinx Blockset Libraries

An A~'N designed using Xilinx Blockset modules and modules created by
author are presented in Figure 2.

Neural network model in Simulink

The main elements of nellrons are:

i

1. 	 The mllltiply-accumlllate (MAC) block. This block cOllld be implemented
efficiently llsing existing dedicated multipliers in Virtex II, Virtex II Pro or

32

addr

Spartan III FPGAs. For example XC2VIOOO (a Virtex Il FPGA) has 40
dedicated 18 bits MAC blocks. They can be implemented efficiently even in
other FPGAs without dedicated MAC blocks, using Xilinx LogiCORE
GeneratorBloc. Figure 3 presents a MAC block realized using blocks from

,Xilin,'{ Blockset library.

r---------~---------u~~--~en

Multiplicator

3
. %-1 q c::J

Out1
Rese! Ace Register

Fig. 3
Multiply-accumulate block

Resources used by the 16 bits multiply-accumulate block
Table 1

Used resources I MAC implemented with
• VIRTEX-II dedicated I Xilinx =L"-og-i-C-O-RE--'
i

57 (29) 91 (63)
Flip Flops 59 (39) 126 (196)
ISUce, 	

O OBlockRAMs
----------------+-~-------------+--~------------~

Look-up tables 66 (17) 170(121)
Dedicated multipliers 1 (1) O

-- i 11,58 % % from a 50.000 gates Spartan-II
% from a 250.000 gates Virtex-II 3.58 % I 5,79

1,07% 1,73%% [rom a 1.000.000 gates Virtex-1I
--~--~------------~~~------~-----~

multipliers multipliers

i

i

Between parentheses are shown resources used by the 16 bits multiply block.

2. Control logic block determines neural network architecture. For example

::::J determines number of neurons and the correspondence between inputs and
)ut \veights. For simplicity we have considered that ali neurons from a layer are

connected ta al! neurons outputs from previous layer. In other cases the not
necessary connections could be deactivated setting corresponding weights 10

zero.
3. 	 ROM memory is used for storage of neurons inputs weights, and the RAM

memory as a data buffer.
4. 	 Transfer function is implemented using look-up tables.

The resources consumed by a VCIY simple network with one layer of 7 neurons
that uses one MAC bloc (implementing a Iayers parallelism) are presented in Tablc
2. Between parenthesis are shown resources used by the 16 bits multiply
accumulate block.

33

The hardware requirements are lowest here so this network can be implemented
in a sma)lcr FPGA. The multiply-accumulate operation is the bottleneck of ANNs
FPGA implementation, because require a large amount oflogic blocks.

The resources depend in a grate measure on the number ofbits used to represent
data and weights. The shown data are for 8 bits representation of data and 12 bits
used for weights.

Resources consumed by a simple network (one MAC per layer)
Table 2

I MAC implemented with
Uscd resources VIRTEX-II dedicated Xilinx LogiCORE

multipliers multipliers
Slices 80 (57) 114(91)
FlIp FIaps 77 (59) 144 (126)
Block RAMs 3 (O) 3 (O)
Look-up tablcs 103 (66) 207 (170)
IDedicated multipliers 1 (1) O
% from a 50.000 gates Spartan-II - 14,84%
1% fi'om a 250.000 gates Virtex-II 5,20% 7,42%
% fi'om a 1.000.000 gates Virtex-II 1,56% 2,22%

The same network implemented using one MAC block per neuron
(consequently implementing node parallelism) uses more resources, but is much
time faster.

Resources consumed by a simple network (one MAC per neuron)

Table 3

I
.
I

I
1
I

U sed resources
MAC implemented with

VIRTEX-II dedicated multipliers
Slices 534
BlockRAMs 1
Dedicated multipliers I 7
% fi'om a 1.000.000 gates Virtex-II 10,43%

Definition of system elements are made automatically using variables that are
taken from Matlab workspace. In this v:ay dimension· of the memories, registers,
counters, as constants and number of bits/word are automatically loaded in
Simulink representation of the ANN afier the simulation of the neural network in
Matlab.

The System Generator tool for Simulink developed by Xilinx Inc. allow the easy
generat ion of hardware Description Language (HDL) code from a system
representation in Simulink. This VHDL design can then be synthesized for
implementation in the Xilinx family ofFPGA.

34

RESULTS

The chosen application for testing the method was static hand ge~ture
recognition system using:

• data glove equipped with optical 	 fiber flex sensors, as fingers and hand
position date source :

• force sens ing resistors, as data source related to contact force between hand
and an object

• 	ADUC512 microconverter as core ofthe data acquisition system .
• 	FPGA platform used for ANN implementation. It receives data in 8 bit parallel

format and drive the 7 segment decoder that displays the recognized ge~ture
number.

Figure 4 presents the implemented con.figuration for gesture recognition.
First block is a parallel port implementation and ensure the correct data transfer

between data acquisition system and gesture recognition neural network.
RNAI is Feed-Forward network that can be trained in many different ways but

one of the most common methods is gradient based leaming using back
propagation. Other very used training method is Hebbian leaming rule. We have
tested both of them with good results. RNA 1 is used for inpllt data preprocessing
and is build from one layer of NI neurons, where NI represent the number of
sensorial inputs.

The second network used for c1assification task is a simple competitive network
with one layer ofN2 neurons, one for each ofN2 gesture to be recognized.

Last block is a BCD to 7 segment decoder and it displays the recognized gesture
nllmber.

D
RU()(RtSystem

Gen.~or Est""" ...

..1
dO~i d1

o..c3 d2
d3
d4
d(5
dO

~~

RO ...

FF AtW

I---';;;l---~date
f---------.Jidr_ROM

f------,-,,--------.J~set_ko 8::!~

Fig.4
Gesture recognition network

Resources consumed by the gesture recognition system
Table 4

MAC implemented with
Used resources

VIRTEX-1I dedicated mllltipliers
Slices 1781
BlockRAMs 2
Oedicated multipliers 22
% from a 1.000,000 gates Virtex-II 34% 	

35

CONCLUSION

The dcveloped and tested methode contributes with folowing aspects:
Creation of the framework that permit rapid development of smart devices
with leaming capability and adaptive behavior

- Dcvelopmcnt of the ANN implementation method using Xilinx Blockset
modules

- Creation of neural network specific modules such as MAC units, activation
functions etc. Il

- The proposed method permit to easily adapt the number ofneurons per layer,
the weight of cach input and the activation function.

- A testbench \Vas developed for application and it permit to implement II

different types of neural nctwork with different kinds of architecture. li:

- Tlle hardware soJhvarc cnviromcnt developed in Matlab cr

- Different types of neural network with different kinds of architecture were
tested such us:

• Feed-Forward network trained in different ways such as gradient based
learning using back propagation, Hebbian learning mIe, etc. si

• Simple competitive network el
Main applications for such smart devices with embedded intelligence are in the al

prosthetic, automotive, "domotic" and automation field where the trend is to h:
produce easy-to-use devices.

aI

REFERENCES ni

[1] liban Zhu, Peter Sutton, FPGA Implementations of Neural Networks - a il'
Survey of a Decade of Progress, 2003.
[2] Ştefan Oniga, Virgil Tiponuţ, Attila Buchman, Daniel Mic, Adaptive Interface L
Based on FGA implemented Artificial Neural Network, Scientific Bul1etin ofthe
Politehnica University of Timişoara, Tomul 49(63), Fascicola 1, 22-23 octombrie
2004, pag.236. n:
[3] Dr. M. Turhan Taner, Kohonen's Self Organizing Networks With h
Conscience, Rock Solid Images, November 1997.
[4] Ştefan Qniga, Attila Buchman, A New Method For Hardware
Implemcntation Of Aliificial Neural Network Used In Smart Sensors The lOth
International Symposium for Design and Technology for Electronic Modules - el
SIITME '04, Bucharest, Romania, 21-24 Sept. 2004, pp. 135-139. fi
[5] Rolf F. Molz, Paulo M. Engel, Femando G. Moraes, Lionel Torres, Michel
Robe11, Codesign of Fully Parallel Neural Network for a Classification
Problem, International Conference on Information Systems, Analysis and
Synthesis, Orlando, USA, 2000.
[6] R. Gadea, 1. Cerda, F. Ballester, A. Mocholi, Artificial neural network
implementation on a single FPGA of a pipelined an-line backpropagation,
Proceedings of the 13th International Symposium on System Synthţsis (1SSS'OO),
pp 225-230, Madrid, Spain, 2000.

36

